“…Introduction. Consider a two-dimensional initial-boundary value problem of space-fractional diffusion equation (SFDE) [4,16,18]: where 0 <č ≤ d(x, y, t), w(x, y, t) ≤ĉ for some positive constantsč andĉ, Ω = (x L , x R ) × (y D , y U ), ∂Ω denotes boundary of Ω,Ω = Ω ∪ ∂Ω, the source term f (x, y, t) and the initial condition ψ(x, y) are known functions, ∂ t u denotes the first-order temporal derivative of u, and α, β ∈ (1, 2). Here, the Riesz fractional derivatives [30] are defined by (∂ α x u)(x, y, t) := σ(α) x L D α x + x D α x R u(x, y, t), (x, y, t) ∈ Ω × (0, T ], (∂ β y u)(x, y, t) := σ(β) y D D β y + y D β y U u(x, y, t), (x, y, t) ∈ Ω × (0, T ] with (1.4) σ(γ) := − 1 2 cos( πγ 2 ) > 0, γ ∈ (1, 2).…”