2018
DOI: 10.1016/j.knosys.2017.10.018
|View full text |Cite
|
Sign up to set email alerts
|

A stability constrained adaptive alpha for gravitational search algorithm

Abstract:  Gravitational search algorithm (GSA), a recent meta-heuristic algorithm inspired by Newton's law of gravity  and mass interactions, shows good performance in various optimization problems. In GSA, the gravitational  constant attenuation factor alpha (α) plays a vital role in convergence and the balance between exploration and  exploitation. However, in GSA and most of its variants, all agents share the same α value without considering  their evolutionary states, which has inevitably caused the pr… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
4

Relationship

2
7

Authors

Journals

citations
Cited by 68 publications
(20 citation statements)
references
References 31 publications
0
19
0
1
Order By: Relevance
“…Bunlar deterministtik olmayan (tamamen rastgele gerçekleşen), deterministtik olan (tamamen uygunluk değerine bağlı olarak gerçekleşen) ve karma seçim yöntemleri (uygunluk değerini ve rastgeleliği dikkate alarak gerçekleşen) olarak özetlenebilir [18][19][20][21][22]. Genetik algoritma dışındaki MSA algoritmalarında seçim yöntemi olarak en çok deterministtik olan yöntem kullanılmaktadır [1][2][3][4][5][23][24][25][26][27][28][29][30]. Bu yöntemin uygulanışı topluluk içerisinde uygunluk değeri en yüksek olan çözüm adayının seçilmesidir.…”
Section: A Seçi̇m Yöntemleri̇ Ve Rulet Tekerleği̇unclassified
“…Bunlar deterministtik olmayan (tamamen rastgele gerçekleşen), deterministtik olan (tamamen uygunluk değerine bağlı olarak gerçekleşen) ve karma seçim yöntemleri (uygunluk değerini ve rastgeleliği dikkate alarak gerçekleşen) olarak özetlenebilir [18][19][20][21][22]. Genetik algoritma dışındaki MSA algoritmalarında seçim yöntemi olarak en çok deterministtik olan yöntem kullanılmaktadır [1][2][3][4][5][23][24][25][26][27][28][29][30]. Bu yöntemin uygulanışı topluluk içerisinde uygunluk değeri en yüksek olan çözüm adayının seçilmesidir.…”
Section: A Seçi̇m Yöntemleri̇ Ve Rulet Tekerleği̇unclassified
“…However, most traditional training methods usually fail to achieve proper parameters of MLP, i.e., weights and biases [38,51]. Recently, we proposed a new GSA variant, SCAA, to discourage its premature convergence problem [61]. It could balance the tradeoff between exploration and exploitation search, and realize stable convergence of swarm agents.…”
Section: Gravitational Optimized Multilayer Perceptronmentioning
confidence: 99%
“…Nevertheless, GSA still faces a premature convergence problem when processing complicated problems [56][57][58][59]. Thus, many GSA variants were proposed [56,60], including the stability-constrained adaptive alpha for the gravitational search algorithm (SCAA) [61], in which the searching performance of GSA was improved by adaptively adjusting the important parameter alpha.…”
Section: Introductionmentioning
confidence: 99%
“…Here, the combination of linear and nonlinear feedbacks, i.e., the combined feedback, was selected to control the logistics of each node [21]. The stability of the combined feedback is well proven [22]. Further, the optimal control curve and endpoint value were solved, respectively, by the variational method and the virtual siphon method.…”
Section: The Case Adjustment Of the Case Library In Cbr Of The Oscmentioning
confidence: 99%