This paper presents an inverse dynamic model estimation based on an artificial neural network of a complete new parallel robot manipulator prototype 6-PGK with six degrees of freedom, built at Petru Maior University of Tirgu-Mures. The model estimation of the parallel robot manipulator is performed with a feedforward artificial neural network. In the control engineering domain there are control structures that need the direct or inverse model of the process for ensuring the process control at the imposed performances. Usually, the determination of the direct/inverse mathematical model is a difficult or impossible task to be achieved. In these cases different non-parametric or parametric, off-line or on-line identification methods are used. A solution that may support the on-line parametric methods is represented by the feedforward artificial neural networks. By implementing feedforward artificial neural networks as a nonlinear autoregressive model with exogenous inputs, the authors investigate the possibility of choosing the optimum parameters that characterize the neural network so that it approximates as better as possible the model of the 6-PGK prototype robot. Finally an innovative algorithm is developed for obtaining the optimal configuration parameters set of the feedforward artificial neural network. The proposed algorithm helps in setting the optimal parameters of the neural network that offer high opportunities to provide satisfactory identification of the robot model. Experimental results obtained by a structure derived from the proposed solution demonstrate a good approximation related to the studied system, which is characterized by nonlinearities and high complexity.