1983
DOI: 10.1080/01495728308963096
|View full text |Cite
|
Sign up to set email alerts
|

A Stable Mass-Flow-Weighted Two-Dimensional Skew Upwind Scheme

Abstract: A new simple stable approach to the numerical solution of problems in fluid flow and heat transfer has been developed. The new approach avoids the stability problems of the skew. upwind difJemnce scheme whle reducing the inaccu~cies ofnumerial diffuion associated with upwind differencing. 7he wigin of rhe instability , ir examined. Skew upwind differencing + compared with the proposed scheme for some idealized numeric01 results. 7he numerical compuiations presented show the superiority of the new scheme with r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

1
5
0

Year Published

1986
1986
2004
2004

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 37 publications
(6 citation statements)
references
References 8 publications
1
5
0
Order By: Relevance
“…For this test problem, the higher-order flow-field discretization scheme given in equations (13) and (16) improve the accuracy of the solution on the 21 x 21 grid by approximately a factor of 5. In fact, the values found on an 11 x 11 grid using the higher-order equations are of the same order of magnitude as the crU," values found on the 21 x 21 grid using equations (12) and (15). The accuracy and stability problems for p < 0.1, mentioned by Shih et d.," are circumvented by the use of the discretization schemes, presented in this paper.…”
Section: Shih' 7 (21 X 21)supporting
confidence: 64%
“…For this test problem, the higher-order flow-field discretization scheme given in equations (13) and (16) improve the accuracy of the solution on the 21 x 21 grid by approximately a factor of 5. In fact, the values found on an 11 x 11 grid using the higher-order equations are of the same order of magnitude as the crU," values found on the 21 x 21 grid using equations (12) and (15). The accuracy and stability problems for p < 0.1, mentioned by Shih et d.," are circumvented by the use of the discretization schemes, presented in this paper.…”
Section: Shih' 7 (21 X 21)supporting
confidence: 64%
“…5 Muir and Baliga 6 show that flow-oriented interpolation with four-noded tetrahedral elements becomes sensitive to the local Peclet number and flow directionality. Despite its benefits, directional upwind differencing may lead to other instabilities involving numerical dispersion.…”
mentioning
confidence: 98%
“…It is known, however, that the SUDS provides a solution with overand under-shoot in some cases. As an improvement on the SUDS, the Mass-Flow-Weighted Skew Upwind Scheme by Hassan et al( 6 ) and the Volume-Weighted Skew Upwind Difference Scheme by Sha et al< 7 ) were contrived, and these schemes are successful in eliminating the over-and under-shoot. And their reports show that the numerical solutions obtained by these improved schemes have a tendency to present 353 a ~teep gradient that is less accurate than that obtained in the SUDS, though the average computational accuracies are almost the same.…”
mentioning
confidence: 99%