This study investigates the resource management problem for millimeter-wave-based switched beam (SWB) full-duplex small cell networks with the consideration of user equipment's (UE's) quality of experience (QoE) requirement and time-varying wireless channels. An optimization problem is formulated to maximize the long-term QoE by implementing beam assignment (BA) and rate control (RC) under short-term beam and long-term energy efficiency constraints. By leveraging the Lyapunov optimization technique, the original problem is converted into a series of BA and RC problems in each time slot. To solve the converted problem with affordable complexity, novel closed-form solutions for BA and RC are first derived by considering beam constraints in SWB systems. A decomposition-based BA and RC (DBR) algorithm with only polynomial computational complexity is then proposed based on the derived closed-form solutions. The simulation results demonstrate that the proposed DBR method can effectively['effectively' appears to be a more suitable word in this case.] balance the performance and complexity because the DBR scheme outperforms the benchmark scheme and achieves nearly optimal performance in terms of system delay and QoE.INDEX TERMS QoE maximization, beam assignment, rate control, time-varying channels, full-duplex, millimeter-wave, switched beam systems.