Indentation and abrasion of machine-element contacts by solid contamination particles is a major problem in many industries and manufacturing processes involving the automotive, aerospace, medical and electronics industries among others. Published theoretical studies on indentation and soft abrasion of surfaces by ductile debris particles other than those of the author are based on several major simplifications concerning material properties, hardness, plasticity modelling, interfacial friction, kinematic conditions, etc. None of the studies published in the literature to date (2011) have those simplifications concurrently relaxed.In view of the shortcomings of existing numerical models on debris particle indentation and abrasion, and given the importance of dent geometry and size on fatigue life of machine elements, a greatly improved numerical model has been developed based on the previous studies of the author. The new model deals with elastoplastic indentation and abrasion of rolling-sliding, dry and lubricated contacts by spherical particles of any hardness, from very soft (e.g. 40 HV) to very hard (e.g. over 1000 HV), including harder than the contact counterfaces. The model incorporates strain-hardening and strain-gradient or indentation-size micro-hardness effects with an expanding-cavity plasticity model, a localised treatment of friction, generalised boundary and kinematic conditions involving localised stick and slip of the particle, linear and nonlinear work-hardening models of the particle, a basic approach on pile-up/sink-in plasticity effects and several other improvements. The model has passed extensive validation tests and found to give realistic predictions that are quantitatively quite close to the experimental results published by independent researchers in the literature concerning dent dimensions and slope. Moreover, it has verified and explained theoretically for the first time the formation of dimples inside and outside dents experimentally observed in rolling and rolling-sliding contacts. This article presents the mathematics of the model, the validation procedure with several real cases from the experimental literature, and a parametric study to show the model's predictions on precise dent geometry in several realistic cases.