2021
DOI: 10.1371/journal.pone.0257968
|View full text |Cite
|
Sign up to set email alerts
|

A static analysis approach for Android permission-based malware detection systems

Abstract: The evolution of malware is causing mobile devices to crash with increasing frequency. Therefore, adequate security evaluations that detect Android malware are crucial. Two techniques can be used in this regard: Static analysis, which meticulously examines the full codes of applications, and dynamic analysis, which monitors malware behaviour. While both perform security evaluations successfully, there is still room for improvement. The goal of this research is to examine the effectiveness of static analysis to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(3 citation statements)
references
References 43 publications
0
2
0
Order By: Relevance
“…Gambar 8 -Gambar 12 adalah plot grafis kurva ROC masingmasing algoritma klasifikasi. Pada Gambar 8 -Gambar 12 dapat dilihat bahwa algoritma Random Forest (RF) dan K-Nearest Neighbor (KNN) memiliki performa yang sangat baik karena kurva ROC yang dihasilkan mendekati titik [0,1]. Kedua algoritma ini juga memiliki nilai AUC yang tertinggi, yaitu sebesar 0,97.…”
Section: Pemilihan Dan Performa Modelunclassified
“…Gambar 8 -Gambar 12 adalah plot grafis kurva ROC masingmasing algoritma klasifikasi. Pada Gambar 8 -Gambar 12 dapat dilihat bahwa algoritma Random Forest (RF) dan K-Nearest Neighbor (KNN) memiliki performa yang sangat baik karena kurva ROC yang dihasilkan mendekati titik [0,1]. Kedua algoritma ini juga memiliki nilai AUC yang tertinggi, yaitu sebesar 0,97.…”
Section: Pemilihan Dan Performa Modelunclassified
“…Alzubi et al [ 29 ] utilized the Harris Hawks Optimization (HHO) algorithm to optimize the hyperparameters of support vector machines to identify malware. Arif JM et al [ 30 ] proposed a permission-based machine learning detection method that utilizes five machine learning classifiers with particle swarm optimization to detect malware. SigPid [ 31 ] is a static malware detection system used to manage rapid growth in Android malware; it performs multiple data pruning techniques on the permission information to identify significant permissions that can be effective in distinguishing whether an app is malicious.…”
Section: Related Workmentioning
confidence: 99%
“…Researchers leverage techniques such as code analysis, permission mapping, and behavior modeling to uncover malicious patterns within Android applications. However, these detection methods usually use only one or a few static features, such as permission [6][7][8], frequency of API (i.e., Application Programming Interface) [9,10], and opcode sequence [11,12]. They are not designed to detect malware Appl.…”
Section: Introductionmentioning
confidence: 99%