Unmanned Aircraft Systems (UAS) have seen unprecedented levels of growth during the last two decades. Although many challenges still exist, one of the main UAS focus research areas is in navigation and control. This paper provides a comprehensive overview of helicopter navigation and control, focusing specifically on small-scale traditional main/tail rotor configuration helicopters. Unique to this paper, is the emphasis placed on navigation/control methods, modeling techniques, loop architectures and structures, and implementations. A 'reference template' is presented and used to provide a basis for comparative studies and determine the capabilities and limitations of algorithms for unmanned/autonomous flight, as well as for navigation, and control. A detailed listing of related research is provided, which includes model structure, helicopter platform, control method and loop architecture, flight maneuvers and results for each. The results of this study was driven by and has led to the development of a 'one-fits-all' comprehensive and modular navigation controller and timing architecture applicable to any rotorcraft platform.