Abstract-Uncertainties in an electromagnetic observable, that arise from uncertainties in geometric and electromagnetic parameters of an interaction configuration, are here characterized by combining computable higher-order moments of the observable with higher-order Chebychev inequalities. This allows for the estimation of the range of the observable by rigorous confidence intervals. The estimated range is then combined with the maximum-entropy principle to arrive at an efficient and reliable estimation of the probability density function of the observable. The procedure is demonstrated for the case of the induced voltage of a thin-wire frame that has a random geometry, is connected to a random load, and is illuminated by a random incident field.