“…In theoretical studies, simpler coarse-grained models are used, but essential features can be captured. Usually, the aqueous electrolyte solution is modeled by so-called primitive model (PM) [ 20 , 22 , 50 , 51 , 52 ], in which a water solvent is considered as a structureless continuum and shows its existence only through a high dielectric constant completely neglecting its hard core; some researches [ 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 ] pick up the hard core missed in the PM and use an appropriately high dielectric constant to reflect the electric dipole moment of the water molecule (such a model is called the solvent primitive model abbreviated as SPM). There are studies [ 61 , 62 ] that consider a semi-primitive model where the solvent is represented by hard spheres with a Yukawa attraction and a dielectric permittivity is also introduced to reflect the electrostatic shielding effect of water molecules; in a very recent study [ 63 ], one Lennard–Jones (LJ) sphere with a higher energy parameter is used to model the water molecule to reflect its strong polarity, both the LJ energy and size parameters are determined by reproducing the two experimentally measured a and b parameters in the van der Waals equation of the state of water.…”