Abstract. The present paper focuses on the altitude dependence of oxygen ion conics in the dayside cusp/cleft region. Here, combining oxygen data from the Akebono, Interball-2 and Cluster satellites allows, for the first time, one to follow the global development of energetic (up to ∼10 keV) ion outflow over a continuous and broad altitude range up to about 5.5 Earth radii (R E ). According to earlier statistical studies, the results are consistent with a height-integrated energization of ions at altitudes up to 3.5 R E . Higher up, the results inferred from Cluster observations put forward evidence of a saturation of both a transverse energization rate and ion gyroradii. We suggest that such results may be interpreted as finite perpendicular wavelength effects (a few tens of km) in the wave-particle interactions. To substantiate the suggestion, we carry out two-dimensional, Monte Carlo simulations of ion conic production that incorporate such effects and limited residence times due to the finite latitudinal extent of the heating region.