Virtual and augmented reality is increasingly prevalent in industrial applications, such as remote control of industrial machinery, due to recent advances in head-mounted display technologies and low-latency communications via 5G. However, the influence of augmentations and camera placement-based viewing positions on operator performance in telepresence systems remains unknown. In this paper, we investigate the joint effects of depth-aiding augmentations and viewing positions on the quality of experience for operators in augmented telepresence systems. A study was conducted with 27 non-expert participants using a real-time augmented telepresence system to perform a remote-controlled navigation and positioning task, with varied depth-aiding augmentations and viewing positions. The resulting quality of experience was analyzed via Likert opinion scales, task performance measurements, and simulator sickness evaluation. Results suggest that reducing the reliance on stereoscopic depth perception via camera placement has a significant benefit to operator performance and quality of experience. Conversely, the depth-aiding augmentations can partly mitigate the negative effects of inferior viewing positions. However the viewing-position based monoscopic and stereoscopic depth cues tend to dominate over cues based on augmentations. There is also a discrepancy between the participants' subjective opinions on augmentation helpfulness, and its observed effects on positioning task performance.