2015
DOI: 10.1016/j.ijplas.2014.11.001
|View full text |Cite
|
Sign up to set email alerts
|

A stochastic crystal plasticity framework for deformation of micro-scale polycrystalline materials

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
15
0
2

Year Published

2016
2016
2020
2020

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 37 publications
(17 citation statements)
references
References 42 publications
0
15
0
2
Order By: Relevance
“…Во многих моделях использу-ется разделение дислокаций на различные типы (мобильные -иммобильные [34,41,42,43,44,68,76,98,99], статистически накопленные и геометрически необходимые [95]). …”
Section: исследования пластической деформации твердых тел на основе дunclassified
See 1 more Smart Citation
“…Во многих моделях использу-ется разделение дислокаций на различные типы (мобильные -иммобильные [34,41,42,43,44,68,76,98,99], статистически накопленные и геометрически необходимые [95]). …”
Section: исследования пластической деформации твердых тел на основе дunclassified
“…В статье [41] рассматривается модификация ранее предложенной авторами модели [42,76] для описания поведения поликристаллов от микро-до макромасштабов. Скорость сдвига и упрочнение кристалла рассчитываются исходя из скорости движения дислока-ций и скоростей их реакций.…”
Section: исследования пластической деформации твердых тел на основе дunclassified
“…In the modeling aspect of Mg and its alloys, many mechanics models are proposed such as a selfconsistent model with a local thermoelasto-viscoplastic behavior based on translated field techniques 15 (Mareau and Berbenni, 2014), a stochastic crystal plasticity model combining a Monte Carlo method with a continuum dislocation dynamics model (Askari et al, 2015), a multi-level constitutive model considering a combination of elasticity, slip and deformation twinning, derived by a two level homogenization scheme (Ardeljan et al, 2016), a generalized distortional hardening continuum model by assuming each part of dissipation non-negative (Shi et al, 2015), the crystal plasticity model for investigating the underlying de-20 formation mechanism upon two-step loading, focusing especially on the effect of twinning and detwinning activities (Hama et al, 2016), and the elastoplastic self-consistent (EPSC) polycrystal plasticity model, including a recently developed twinning-detwinning model for rare earth element containing Mg alloys at quasi-static and dynamic strain rates (Bhattacharyya et al, 2016).…”
Section: Introductionmentioning
confidence: 99%
“…Another framework retains the essential structure of the classical plasticity without any high-order stress, in which the strain gradient comes into play through the incremental plastic hardening modulus or a yield criterion. Relevant works include Acharya and Bassani (1995), Wang (2000, 2002a), Gao and Huang (2001), Abu Al-Rub and Voyiadjis (2006) and Askari et al (2015). With the strain gradient plasticity theories, size effect found in various micro-tests can be effectively predicted, such as the thin wire torsion and ultrathin beam bending (Fleck et al, 1994;Wang, 2000, 2002a;Huang et al, 2000;Gao and Huang, 2001;Mao et al, 2013;Bardella and Panteghini, 2015), the micro-and nano-indentation (Nix and Gao, 1998;Abu AlRub and Voyiadjis, 2006;Chen et al, 2007;Ouyang et al, 2010;Ma et al, 2012), compression of micropillars (Kiener et al, 2011;Zhang et al, 2014;Lin et al, 2016) as well as uniaxial compression and tension of particle-reinforced metal matrix composites (PMMC) (Fleck and Hutchinson, 1997;Chen and Wang, 2002b;Aghababaei and Joshi, 2011;Azizi et al, 2013;Legarth, 2015).…”
Section: Introductionmentioning
confidence: 99%