2018
DOI: 10.1051/epjn/2018015
|View full text |Cite
|
Sign up to set email alerts
|

A stochastic method to propagate uncertainties along large cores deterministic calculations

Abstract: Deterministic uncertainty propagation methods are certainly powerful and time-sparing but their access to uncertainties related to the power map remains difficult due to a lack of numerical convergence. On the contrary, stochastic methods do not face such an issue and they enable a more rigorous access to uncertainty related to the PFNS. Our method combines an innovative transport calculation chain and a stochastic way of propagating uncertainties on nuclear data: first, our calculation scheme consists in the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 13 publications
0
1
0
Order By: Relevance
“…Reactor studies require nuclear data as an input of the calculations through the libraries of the neutron interactions with matter. Since a few decades, the propagation of the uncertainty of these nuclear data has a growing importance in many fields such as safety analysis, optimisation of the operation margins, or design of very innovative reactors where the experimental feedback on the system behaviour is limited [1,2].…”
Section: Introductionmentioning
confidence: 99%
“…Reactor studies require nuclear data as an input of the calculations through the libraries of the neutron interactions with matter. Since a few decades, the propagation of the uncertainty of these nuclear data has a growing importance in many fields such as safety analysis, optimisation of the operation margins, or design of very innovative reactors where the experimental feedback on the system behaviour is limited [1,2].…”
Section: Introductionmentioning
confidence: 99%