Metal 3D printing technology is a promising manufacturing method. The quality of the printed product can pass for mechanical application, if the anisotropy of the microstructure, imperfections, deformation, and residual stress of the printed sample could be lower than the appropriate level or if they are fully illuminated. Thermal stress is one of the significant reasons for deformation in the 3D printed samples. Thermal stresses are the direct consequence of the local temperature gradient. In this research, the effect of the temperature printer’s chamber (from room temperature to 900 C) was studied on thermal stress and subsequent total deformation in the printed sample. The printed sample is a six-layers-printed walk, which could be considered as a building block of other complex shapes and give us inside about deformation. The computational results show a meaningful reduction in thermal stress and deformation at the higher temperature of the printer’s chamber. The lower final deformation of the printed sample is an important subject, especially for samples with complex shapes.