Quantifying the importance and power of individual nodes depending on their position in socio-economic networks constitutes a problem across a variety of applications. Examples include the reach of individuals in (online) social networks, the importance of individual banks or loans in financial networks, the relevance of individual companies in supply networks, and the role of traffic hubs in transport networks. Which features characterize the importance of a node in a trade network during the emergence of a globalized, connected market? Here we analyze a model that maps the evolution of global connectivity in a supply network to a percolation problem. In particular, we focus on the influence of topological features of the node within the underlying transport network. Our results reveal that an advantageous position with respect to different length scales determines the competitiveness of a node at different stages of the percolation process and depending on the speed of the cluster growth.