2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA) 2017
DOI: 10.1109/seaa.2017.37
|View full text |Cite
|
Sign up to set email alerts
|

A Strategy Based on Multiple Decision Criteria to Support Technical Debt Management

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 19 publications
0
2
0
Order By: Relevance
“…These papers use code metrics to quantify each technical debt item's principal and interest cost. This quantification is used with other techniques, such as cost-benefit ranking (Zazworka, Seaman, and Shull, 2011;Yli-Huumo et al, 2016;Plösch et al, 2018), Change Control Boards (CCB) (Snipes et al, 2012), and mathematical formulas (L. F. Ribeiro et al, 2017;Skourletopoulos, Mavromoustakis, et al, 2016) to prioritize the technical debt items. Data mining and historical analysis are also widely used techniques to prioritize technical debt (Falessi and Voegele, 2015;Choudhary and P. Singh, 2016;Mensah et al, 2018;Detofeno et al, 2022;Tsoukalas, Siavvas, et al, 2023;B.…”
Section: Classification Papersmentioning
confidence: 99%
See 1 more Smart Citation
“…These papers use code metrics to quantify each technical debt item's principal and interest cost. This quantification is used with other techniques, such as cost-benefit ranking (Zazworka, Seaman, and Shull, 2011;Yli-Huumo et al, 2016;Plösch et al, 2018), Change Control Boards (CCB) (Snipes et al, 2012), and mathematical formulas (L. F. Ribeiro et al, 2017;Skourletopoulos, Mavromoustakis, et al, 2016) to prioritize the technical debt items. Data mining and historical analysis are also widely used techniques to prioritize technical debt (Falessi and Voegele, 2015;Choudhary and P. Singh, 2016;Mensah et al, 2018;Detofeno et al, 2022;Tsoukalas, Siavvas, et al, 2023;B.…”
Section: Classification Papersmentioning
confidence: 99%
“…Framework (Leppanen et al, 2015), (Fernández-Sánchez, Garbajosa, et al, 2015), (Martini, Bosch, and Chaudron, 2015), (Martini and Bosch, 2016), (Brauer et al, 2017), (Martini and Bosch, 2017), (Hormann et al, 2017), (R. d. Almeida et al, 2018), (R. R. d. , , (M. G. Stochel, Cholda, et al, 2020), (S. Freire, Rios, Gutierrez, et al, 2020), (Mandic et al, 2021), (Wiese et al, 2022) Artificial Intelligence (Akbarinasaji, 2015), (Codabux and Williams, 2016), (Mohan et al, 2016), (Kouros et al, 2019), (Alfayez and Boehm, 2019) Cost-Benefit (Zazworka, Seaman, and Shull, 2011), (Snipes et al, 2012), (Skourletopoulos, Mavromoustakis, et al, 2016), (Yli-Huumo et al, 2016), (L. F. Ribeiro et al, 2017), (Plösch et al, 2018) Historical (Falessi and Voegele, 2015), (Choudhary and P. Singh, 2016), (Charalampidou et al, 2017), (Tornhill, 2018) Portfolio Approach (Yuepu , (Plösch et al, 2018) (Brauer et al, 2017), (Albarak and Bahsoon, 2018) Options (Fernández-Sánchez, Díaz, et al, 2014), (Abad and Ruhe, 2015), (Aldaeej and Seaman, 2018) The papers discuss ways to standardize the technical debt prioritization process in the Framework category. Most of the frameworks developed consist in finding technical debt items, measuring their payment cost and interest (Fernández-Sánchez, Garbajosa, et al, 2015) (Leppanen et al, 2015) (Martini and Bosch, 2016).…”
Section: Classification Papersmentioning
confidence: 99%