2014
DOI: 10.1070/im2014v078n02abeh002689
|View full text |Cite
|
Sign up to set email alerts
|

A strengthening of a theorem of Bourgain and Kontorovich

Abstract: АннотацияВ настоящей работе доказывается, что в натуральном ряду чисел имеется по-ложительная пропорция знаменателей тех конечных цепных дробей, все неполные частные которых принадлежат алфавиту {1, 2, 3, 4, 10}. Ранее аналогичная теоре-ма была известна лишь для алфавита {1, 2, 3, 4, 5}, либо для алфавитов большей мощности.Библиография: 14 названий.Ключевые слова и выражения: цепная дробь, континуант, тригонометри-ческая сумма, гипотеза Зарембы.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0

Year Published

2015
2015
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(9 citation statements)
references
References 12 publications
0
9
0
Order By: Relevance
“…There have been other important refinements on this result by Frolenkov-Kan [12], [13], Kan [25], [26], Huang [18] and Maggee-Oh-Winter [30].…”
Section: Theorem 16 (Bourgain-kontorovich Huang)mentioning
confidence: 78%
See 4 more Smart Citations
“…There have been other important refinements on this result by Frolenkov-Kan [12], [13], Kan [25], [26], Huang [18] and Maggee-Oh-Winter [30].…”
Section: Theorem 16 (Bourgain-kontorovich Huang)mentioning
confidence: 78%
“…In the introduction we described interesting results of Bourgain-Kontorovich [2], Huang [18], and Kan [25], [26], [27], which made progress towards the Zaremba Conjecture. These results have a slightly more general formulation, which we will now recall.…”
Section: Zaremba Theorymentioning
confidence: 99%
See 3 more Smart Citations