2018
DOI: 10.1353/rhe.2018.0035
|View full text |Cite
|
Sign up to set email alerts
|

A Structural Model for Predicting Student Retention

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
5
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 19 publications
(6 citation statements)
references
References 40 publications
0
5
0
1
Order By: Relevance
“…To enhance the interpretability of our two-mode network analysis, we assigned these 62 themes to three levels: individual, organization, and system-analogous to the analysis by Daenekindt and Huisman (2020). For example, "A structural model for predicting student retention" (Sass et al, 2018) is classified under college student at the individual level; "The role of the associate dean in UK universities: distributed leadership in action?" (Floyd & Preston, 2018) is classified under leadership at the organizational level; "Equity in higher education and graduate labour market outcomes in Australia" (Li et al, 2017) is classified under labor market at the system level.…”
Section: Shifts In Main Research Themesmentioning
confidence: 99%
“…To enhance the interpretability of our two-mode network analysis, we assigned these 62 themes to three levels: individual, organization, and system-analogous to the analysis by Daenekindt and Huisman (2020). For example, "A structural model for predicting student retention" (Sass et al, 2018) is classified under college student at the individual level; "The role of the associate dean in UK universities: distributed leadership in action?" (Floyd & Preston, 2018) is classified under leadership at the organizational level; "Equity in higher education and graduate labour market outcomes in Australia" (Li et al, 2017) is classified under labor market at the system level.…”
Section: Shifts In Main Research Themesmentioning
confidence: 99%
“…This study contributes to the literature in several ways. First, there remains limited published studies that have used SEM to examine effects on first-year retention (Bowman et al, 2019; Cabrera et al, 1993; Collier et al, 2020a; Sass et al, 2018). Furthermore, to our knowledge, incorporating pre-high school (in this case 3rd through 8th grade) performance in studies examining college enrollment, performance and persistence remains uncommon in the literature (Bui, 2005) and is essentially non-existent in studies using SEM– despite theorizations that middle-school performance may affect college enrollment and performance through high school performance (San Pedro et al, 2017).…”
mentioning
confidence: 99%
“…En la misma línea, pareciera que las condiciones de contexto de los estudiantes tiene cierta implicancia en sus logros académicos, donde el estudio individual, el tiempo dedicado al estudio, el compromiso de la institución, el contexto familiar, la ayuda financiera y el esfuerzo parecieran ser variables que promoverían la persistencia de los alumnos (Gipson, et al 2018) junto a la importancia que tienen las variables psicosociales como la eficacia académica, resolución de problemas y conexión con la institución en la predicción de variables de éxito estudiantil, con un efecto potencial indirecto en la retención de los alumnos (Sass et al 2018).…”
Section: Variables Relacionadas Que Impactan El Desempeño Estudiantilunclassified