In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported L-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ( 1 H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.Cephalopods such as squids, cuttlefish, and octopods are equipped with a hard beak that is as sharp as a knife and crucial for disabling prey and feeding. Beak chemistry has attracted much recent attention in materials science: in contrast to mammalian hard tissues, the beak is devoid of minerals, consisting instead of a composite of proteins and chitin fibers with varying degrees of hydration along the beak structure. In animals, this is a unique material design for hard tissues that function in biting. The Dosidicus beak biocomposite possesses a stiffness (elastic modulus, E) of 5 GPa at the distal tip that decreases incrementally to 50 MPa (wet conditions) in the proximal wing, which is tightly embedded within the muscular buccal mass (1). As the beak lacks any of the known strengthening entities previously associated with wear-resistant tissues such as biomineralization (2-5), metal ion cross-linking (6, 7), or protein halogenation (8, 9), it begs a question, namely, what sort of molecular processing can impart such impressive physical properties? A deeper understanding of the mechanisms by which beaks are sclerotized is also likely to reveal novel chemical paradigms for the fabrication of robust and biocompatible composites for a variety of restorative applications. Furthermore, synthesis of such polymer-based composite materials could inspire environmentally friendly routes as Dosidicus beak is formed under ambient seawater conditions and is wholly nontoxic.From a biochemical perspective the biomaterial most similar to Dosidicus beak is hard insect cuticle. Both are predominantly composed of chitin fibers, protein, and polyphenolic compounds (10, 11). In insect cuticle, the contribution of dehydration and cross-...