An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such that both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graph G is defined to have vertices the arcs of G such that two arcs uv, xy are adjacent if and only if (v, u, x, y) is a 3-arc of G. We prove that any connected 3-arc graph is hamiltonian, and all iterative 3-arc graphs of any connected graph of minimum degree at least three are hamiltonian. As a corollary we obtain that any vertex-transitive graph which is isomorphic to the 3-arc graph of a connected arc-transitive graph of degree at least three must be hamiltonian. This confirms the conjecture, for this family of vertex-transitive graphs, that all vertex-transitive graphs with finitely many exceptions are hamiltonian. We also prove that if a graph with at least four vertices is Hamilton-connected, then so are its iterative 3-arc graphs.