Cellular Vehicle-to-Everything (C-V2X) communications is a technology that enables intelligent vehicles to exchange information and thus coordinate with other vehicles, road users, and infrastructure. However, despite advancements in cellular technology for V2X applications, significant challenges remain regarding the ability of the system to meet stringent Quality-of-Service (QoS) requirements when deployed at scale. Thus, smaller-scale V2X use case deployments may embody a necessary stepping stone to address these challenges. This work assesses network architectures for an Intelligent Perception System (IPS) blind road junction or blind corner scenarios. Measurements were collected using a private 5G NR network with Sub-6GHz and mmWave connectivity, evaluating the feasibility and trade-offs of IPS network configurations. The results demonstrate the feasibility of the IPS as a V2X application, with implementation considerations based on deployment and maintenance costs. If computation resources are co-located with the sensors, sufficient performance is achieved. However, if the computational burden is instead placed upon the intelligent vehicle, it is questionable as to whether an IPS is achievable or not. Much depends on image quality, latency, and system performance requirements.