Martins, Guilherme Leibsohn; Braga, Sergio Leal (Advisor). Performance of Single Stage Partial Admission Axial Expander Applied to a Waste Heat Recovery Rankine Organic Cycle. Rio de Janeiro, 2015. 188p. Doctoral Thesis -Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.The present work deals with the analysis of the application of a single stage partial admission axial expander in organic Rankine cycle, in order to recover the heat rejected by an internal combustion engine. The selected fluid is R245fa, whose real gas behavior is relevant under the studied conditions, as modeled by the Redlich-Kwong-Soave equation of state. A loss model for the flow through the axial blades is proposed in this work, based on the boundary layer theory, the concept of diffusion factor, wind tunnel cascade tests available in literature and the conservation equations for compressible flow. The diffusion factor is the parameter responsible to quantify the adverse pressure gradient on the blade profile surfaces. The basic geometry and dimensions needed to achieve maximum expander efficiency are determined under several subcritical and supercritical cycle conditions by means of a restrained design optimization algorithm. The optimum value for the evaporator temperature under subcritical cycle is stablished so as to obtain the maximum power from the recovery cycle, according the constructive alternatives considered. The single stage expander design is shown to be greatly influenced by media compressibility and the use of convergentdivergent profiled nozzles is promising to achieve the highest performance potential, especially at high evaporator pressure conditions.
Keywordsorganic Rankine cycle; dense gases; axial expander; diffusion factor; profile loss; design optimization. α -ângulo da velocidade absoluta com a direção tangencial; α(T) -função na equação RKS;β -ângulo da velocidade relativa com a direção tangencial; χ − fator de correção; δ -espessura de deslocamento da camada limite;δu -carregamento da palheta (grade);∆ -folga axial entre disco e carcaça;∆ b -folga axial entre palhetas rotativas e estacionárias;∆ s -folga axial entre aro da roda e carcaça;∆ r -folga radial entre topo da palheta e carcaça;∆λ ind -desvio angular induzido na entrada da grade;∆λ dev -deflexão angular na saída da grade; ε -fração de admissão;γ -massa específica;Γ -derivada fundamental da dinâmica do gás;η -eficiência; ϑ -espessura de quantidade de movimento da camada limite;λ -ângulo (grade); ω -fator acêntrico.Ω -velocidade angular.Ω a , Ω b -constantes da equação RKS; ζ -coeficiente de perda referente à energia cinética real.
Subscritos:0 -condição de estagnação;1 -estação a montante da grade ou a montante do bocal (estágio);2 -estação a jusante da grade ou entre bocal e rotor (estágio);2te -estação na saída da grade, entre os bordos de fuga;3 -estação a jusante do rotor (estágio);