Plywood has poor sound insulation due to its insufficient areal density, which cannot satisfy the demands of an indoor acoustic environment. This report proposed to use furfuryl alcohol to impregnate poplar veneer as a raw material for plywood and explored the sound insulation potential of furfuryl alcohol-modified poplar veneer. The effect of different formulations on the sound insulation performance of modified veneers was discussed, such as furfuryl alcohol concentrations, catalyst categories, and solvent categories. The weight percent gain (WPG) and areal density (AD) were used to evaluate the impregnation effectiveness of furfuryl alcohol modification. The sound insulation was measured by the impedance tube method. The results showed that the WPG of the furfuryl alcohol-modified veneers was evident, and the AD was effectively improved. Furthermore, the average sound insulation of furfuryl alcohol-modified poplar veneer was 25.68~40.10 dB, which increased by 10.8~19.1% compared with that of unmodified veneer. The modified veneer with 50% furfuryl alcohol concentration, taking isopropanol as a solvent, and maleic anhydride as a catalyst, had the optimal sound insulation performance. At the same time, the cell microstructure and chemical components were characterized by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) theory to explain the sound insulation mechanism further. The results showed that the distortion of cell walls was improved, suggesting a change in the mechanical properties of the cell wall. At the same time, more micropores formed since the filling of furfuryl alcohol resin, yielding a tortuous propagation pathway, so the sound insulation performance improved. Finally, it demonstrated the potential of furfuryl alcohol-modified poplar veneer as raw material to prepare plywood with excellent sound insulation.