Amidst the backdrop of rural revitalization and cultural renaissance, there is a surge in the construction demand for replica traditional vernacular dwellings. Traditional cost estimation methods struggle to meet the need for rapid and precise estimation due to the complexity inherent in their construction. To address this challenge, this study aims to enhance the accuracy and efficiency of cost estimation by innovatively developing an Adaptive Self-Explanatory Convolutional Neural Network (ASCNN) model, tailored to meet the specific cost estimation needs of replica traditional vernacular dwellings in the Huizhou region. The ASCNN model employs a Random Forest model to filter key features, inputs these into the CNN for cost estimation, and utilizes Particle Swarm Optimization (PSO) to optimize parameters, thereby improving predictive accuracy. The decision-making process of the model is thoroughly interpreted through SHAP value analysis, ensuring credibility and transparency. During the construction of the ASCNN model, this study collected and analyzed bidding control price data from 98 replica traditional vernacular dwellings. The empirical results demonstrate that the ASCNN model exhibits outstanding predictive performance on the test set, with a Root Mean Square Error (RMSE) of 9828.06 yuan, a Mean Absolute Percentage Error (MAPE) of 0.6%, and a Coefficient of Determination (R2) as high as 0.989, confirming the model’s high predictive accuracy and strong generalization capability. Through SHAP value analysis, this study further identifies key factors such as floor plan layout, roof area, and column material coefficient that are central to cost prediction. The ASCNN model proposed in this study not only significantly improves the accuracy of cost estimation for Huizhou replica traditional vernacular dwellings, but also enhances its transparency and credibility through model interpretation methods, providing a reliable basis for related investment decisions. The findings of this study also offer valuable references and insights for rapid and precise cost estimation of replica buildings in other regions worldwide.