It is vitally critical to understand the dynamics of the non-Newtonian fluids model from an engineering and industrial perspective. Many industrial and technical activities, such as the extrusion of polymer sheets, the manufacturing of paper, and the development of photographic films, require non-Newtonian fluids. Energy transportation has numerous industrial applications, and Classical heat and mass transfer laws do not accurately anticipate thermal and solute relaxation times. This study applies the modified Ohm law to heat and mass transport, utilizing Fick's and generalized Fourier concepts. And the primary purpose of this study is to explore the characteristics of heat and mass transport in the MHD mixed convective flow involving a micropolar Casson fluid across the vertically inclined starching surface with multiple slip effects. Moreover, the study considers additional factors like thermal radiation, heat generation, chemical reactions, and the influence of thermophoretic to analyze both energy and nanoparticle concentration aspects comprehensively. To simplify the flow analysis, the original flow model is transformed into a couple of ODEs (ordinary differential equations) by employing relevant similarity transformations. These ODEs establish a system that is solved numerically by using the Bvp4c solver through MATLAB. It is worth noticing that a more substantial estimation of the thermal and concentration relaxation parameters decays the fluid temperature and nanoparticle concentration, respectively, and the growth of the material parameter reduces the drag force, which consequently augmenting the fluid velocity. Furthermore, the enhancement occurs in the skin friction due to greater estimation of the micropolar parameter, while the Casson fluid parameter causes the opposite trend.