Airborne particles affect human health and significantly influence visibility and climate. A major fraction of these particles result from the reactions of gaseous precursors to generate low-volatility products such as sulfuric acid and high-molecular weight organics that nucleate to form new particles. Ammonia and, more recently, amines, both of which are ubiquitous in the environment, have also been recognized as important contributors. However, accurately predicting new particle formation in both laboratory systems and in air has been problematic. During the oxidation of organosulfur compounds, gas-phase methanesulfonic acid is formed simultaneously with sulfuric acid, and both are found in particles in coastal regions as well as inland. We show here that: (i) Amines form particles on reaction with methanesulfonic acid, (ii) water vapor is required, and (iii) particle formation can be quantitatively reproduced by a semiempirical kinetics model supported by insights from quantum chemical calculations of likely intermediate clusters.Such an approach may be more broadly applicable in models of outdoor, indoor, and industrial settings where particles are formed, and where accurate modeling is essential for predicting their impact on health, visibility, and climate.kinetics modeling | multi-component nucleation | cluster enthalpy | flow tube reactor | atmospheric nanoparticles U nderstanding how gas phase precursors lead to the formation and growth of new particles that are important for scattering light, for serving as cloud condensation or ice nuclei, and for transport deep into the lung, is one of the most pressing scientific problems (1-5). The most studied system is the conversion of gas-phase SO 2 to sulfuric acid and sulfate particles, but even in this case, models typically underestimate particle formation by an order of magnitude or more (3, 4, 6). However, an accurate predictive capability based on molecular-level understanding is critical for projecting the impacts of particles and developing optimal control strategies.Classical nucleation theory (CNT) has been used for almost a century (7, 8) to predict new particle formation. At its heart, CNT is a thermodynamics approach that assumes that the precursor clusters have bulk liquid properties such as surface tension, and that addition to and evaporation from the clusters occurs via monomers. Modifications to CNT using kinetics approaches have been described (9, 10). More recently, dynamical nucleation theory (11-13) examined intermolecular interactions and used them to obtain rate constants for the individual steps through variational transition-state theory. This theory has been applied to particle formation in relatively simple systems and clusters of relatively few molecules. Recent data from field and laboratory studies, however, suggest that multicomponent systems with multiple reaction steps are likely involved in new particle formation in the atmosphere (14-22).We report here a combination of experimental and theoretical studies of new particle fo...