A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor’s status under quasi-constant conditions. This study aims to investigate the utility of dual-tracer dynamic PET imaging with 18F-Alfatide II (18F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and 18F-FDG for parametric monitoring of tumor responses to therapy.
Methods
We administered doxorubicin to one group of athymic nude mice with U87MG tumors and Abraxane to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting by injecting the mice via tail vein catheters with 18F-Alfatide II, followed 40 minutes later by 18F-FDG. To achieve signal separation of the two tracers, we fit a three-compartment reversible model to the time activity curve (TAC) of 18F-Alfatide II for the 40 min prior to 18F-FDG injection, and then extrapolated to 90 min. The 18F-FDG tumor TAC was isolated from the 90 min dual tracer tumor TAC by subtracting the fitted 18F-Alfatide II tumor TAC. With separated tumor TACs, the 18F-Alfatide II binding potential (Bp=k3/k4) and volume of distribution (VD), and 18F-FDG influx rate ((K1×k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single tracer imaging and to monitor therapeutic response.
Results
The transport and binding rate parameters K1-k3 of 18F-Alfatide II, calculated from the first 40 min of dual tracer dynamic scan, as well as Bp and VD, correlated well with the parameters from the 60 min single tracer scan (R2 > 0.95). Compared with the results of single tracer PET imaging, FDG tumor uptake and influx were recovered well from dual tracer imaging. Upon doxorubicin treatment, while no significant changes in static tracer uptake values of 18F-Alfatide II or 18F-FDG were observed, both 18F-Alfatide II Bp and 18F-FDG influx from kinetic analysis in tumors showed significant decreases. For Abraxane therapy of MDA-MB-435 tumors, significant decrease was only observed with 18F-Alfatide II Bp value from kinetic analysis but not 18F-FDG influx.
Conclusion
The parameters fitted with compartmental modeling from the dual tracer dynamic imaging are consistent with those from single tracer imaging, substantiating the feasibility of this methodology. Even though no significant differences in tumor size were found until 5 days after doxorubicin treatment started, at day 3 there were already substantial differences in 18F-Alfatide II Bp and 18F-FDG influx rate. Dual tracer imaging can measure 18F-Alfatide II Bp value and 18F-FDG influx simultaneously to evaluate tumor angiogenesis and metabolism. Such changes are known to precede anatomical changes, and thus parametric imaging may offer the promise of early prediction of therapy response.