A study of rank-one sets with linear side constraints and application to the pooling problem
Santanu S. Dey,
Burak Kocuk,
Asteroide Santana
Abstract:We study sets defined as the intersection of a rank-1 constraint with different choices of linear side constraints. We identify different conditions on the linear side constraints, under which the convex hull of the rank-1 set is polyhedral or second-order cone representable. In all these cases, we also show that a linear objective can be optimized in polynomial time over these sets. Towards the application side, we show how these sets relate to commonly occurring substructures of a general quadratically const… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.