In this paper, we couple regularization techniques with the adaptive hp-version of the boundary element method (hp-BEM) for the efficient numerical solution of linear elastic problems with nonmonotone contact boundary conditions. As a model example we treat the delamination of composite structures with a contaminated interface layer. This problem has a weak formulation in terms of a nonsmooth variational inequality. The resulting hemivariational inequality (HVI) is first regularized and then, discretized by an adaptive hp-BEM. We give conditions for the uniqueness of the solution and provide an a-priori error estimate. Furthermore, we derive an a-posteriori error estimate for the nonsmooth variational problem based on a novel regularized mixed formulation, thus enabling hp-adaptivity. Various numerical experiments illustrate the behavior, strengths and weaknesses of the proposed high-order approximation scheme.