The China–France oceanography satellite scatterometer (CSCAT) is a rotating fan-beam scanning observation scatterometer operating in the Ku-band, and its product quality is affected by rain contamination. The multiple azimuthal NRCS measurements provided by CSCAT L2A, the retrieved wind speed and wind direction provided by CSCAT L2B, as well as the rain data provided by GPM, are used to construct a new rain identification and rain intensity classification model for CSCAT. The EXtreme Gradient Boosting (XGBoost) model, optimized by the Dung Beetle Optimizer (DBO) algorithm, is developed and evaluated. The performance of the DBO-XGBoost exceeds that of the CSCAT rain flag in terms of rain identification ability. Also, compared with XGBoost without parameter optimization, K-nearest Neighbor with K = 5 (KNN5) and K-nearest Neighbor with K = 3 (KNN3), the performance of DBO-XGBoost is better. Its rain identification achieves an accuracy of about 90% and a precision of about 80%, which enhances the quality control of rain. DBO-XGBoost has also shown good results in the classification of rain intensity. This ability is not available in traditional rain flags. In the global regional and local regional tests, most of the accuracy and precision in rain intensity classification have reached more than 80%. This technology makes full use of the rich observed information of CSCAT, realizes rain identification, and can also classify the rain intensity so as to further evaluate the degree of rain contamination of CSCAT products.