Search citation statements
Paper Sections
Citation Types
Publication Types
Relationship
Authors
Journals
Cache-coherent shared memory has traditionally been the favorite memory organization for chip multiprocessors thanks to its high programmability. In this organization the cache hierarchy is in charge of moving the data and keeping it coherent between all the caches, enabling the usage of shared memory programming models where the programmer does not need to carry out any data management operation. Unfortunately, performing all the data management operations in hardware causes severe problems, being the primary concerns the power consumption originated in the caches and the amount of coherence traffic in the interconnection network. A good solution is to introduce ScratchPad Memories (SPMs) alongside the cache hierarchy, forming a hybrid memory hierarchy. SPMs are more power-efficient than caches and do not generate coherence traffic, but they degrade programmability. In particular, SPMs require the programmer to partition the data, to program data transfers, and to keep coherence between different copies of the data. A promising solution to exploit the benefits of the SPMs without harming programmability is to allow programmers to use shared memory programming models and to automatically generate code that manages the SPMs. Unfortunately, current compilers and runtime systems encounter serious limitations to automatically generate code for hybrid memory hierarchies from shared memory programming models. This thesis proposes to transparently manage the SPMs of hybrid memory hierarchies in shared memory programming models. In order to achieve this goal this thesis proposes a combination of hardware and compiler techniques to manage the SPMs in fork-join programming models and a set of runtime system techniques to manage the SPMs in task programming models. The proposed techniques allow to program hybrid memory hierarchies with these two well-known and easy-to-use forms of shared memory programming models, capitalizing on the benefits of hybrid memory hierarchies in power consumption and network traffic without harming programmability. The first contribution of this thesis is a hardware/software co-designed coherence protocol to transparently manage the SPMs of hybrid memory hierarchies in fork-join programming models. The solution allows the compiler to always generate code to manage the SPMs with tiling software caches, even in the presence of unknown memory aliasing hazards between memory references to the SPMs and to the cache hierarchy. On the software side, the compiler generates a special form of memory instruction for memory references with possible aliasing hazards. On the hardware side, the special memory instructions are diverted to the correct copy of the data using a set of directories that track what data is mapped to the SPMs. The second contribution of this thesis is a set of runtime system techniques to manage the SPMs of hybrid memory hierarchies in task programming models. The proposed runtime system techniques exploit the characteristics of these programming models to map the data specified in the task dependences to the SPMs. Different policies are proposed to mitigate the communication costs of the data transfers, overlapping them with other execution phases such as the task scheduling phase or the execution of the previous task. The runtime system can also reduce the number of data transfers by using a task scheduler that exploits data locality in the SPMs. In addition, the proposed techniques are combined with mechanisms that reduce the impact of fine-grained tasks, such as hardware runtime systems or large SPM sizes. The accomplishment of this thesis is that hybrid memory hierarchies can be programmed with fork-join and task programming models. Consequently, architectures with hybrid memory hierarchies can be exposed to the programmer as a shared memory multiprocessor, taking advantage of the benefits of the SPMs while maintaining the programming simplicity of shared memory programming models. La memoria compartida con coherencia de caches es la jerarquía de memoria más utilizada en multiprocesadores gracias a su programabilidad. En esta solución la jerarquía de caches se encarga de mover los datos y mantener la coherencia entre las caches, habilitando el uso de modelos de programación de memoria compartida donde el programador no tiene que realizar ninguna operación para gestionar las memorias. Desafortunadamente, realizar estas operaciones en la arquitectura causa problemas severos, siendo especialmente relevantes el consumo de energía de las caches y la cantidad de tráfico de coherencia en la red de interconexión. Una buena solución es añadir Memorias ScratchPad (SPMs) acompañando la jerarquía de caches, formando una jerarquía de memoria híbrida. Las SPMs son más eficientes en energía y tráfico de coherencia, pero dificultan la programabilidad ya que requieren que el programador particione los datos, programe transferencias de datos y mantenga la coherencia entre diferentes copias de datos. Una solución prometedora para beneficiarse de las ventajas de las SPMs sin dificultar la programabilidad es permitir que el programador use modelos de programación de memoria compartida y generar código para gestionar las SPMs automáticamente. El problema es que los compiladores y los entornos de ejecución actuales sufren graves limitaciones al gestionar automáticamente una jerarquía de memoria híbrida en modelos de programación de memoria compartida. Esta tesis propone gestionar automáticamente una jerarquía de memoria híbrida en modelos de programación de memoria compartida. Para conseguir este objetivo esta tesis propone una combinación de técnicas hardware y de compilador para gestionar las SPMs en modelos de programación fork-join, y técnicas en entornos de ejecución para gestionar las SPMs en modelos de programación basados en tareas. Las técnicas propuestas hacen que las jerarquías de memoria híbridas puedan programarse con estos dos modelos de programación de memoria compartida, de tal forma que las ventajas en energía y tráfico de coherencia se puedan explotar sin dificultar la programabilidad. La primera contribución de esta tesis en un protocolo de coherencia hardware/software para gestionar SPMs en modelos de programación fork-join. La propuesta consigue que el compilador siempre pueda generar código para gestionar las SPMs, incluso cuando hay posibles alias de memoria entre referencias a memoria a las SPMs y a la jerarquía de caches. En la solución el compilador genera instrucciones especiales para las referencias a memoria con posibles alias, y el hardware sirve las instrucciones especiales con la copia válida de los datos usando directorios que guardan información sobre qué datos están mapeados en las SPMs. La segunda contribución de esta tesis son una serie de técnicas para gestionar SPMs en modelos de programación basados en tareas. Las técnicas aprovechan las características de estos modelos de programación para mapear las dependencias de las tareas en las SPMs y se complementan con políticas para minimizar los costes de las transferencias de datos, como solaparlas con fases del entorno de ejecución o la ejecución de tareas anteriores. El número de transferencias también se puede reducir utilizando un planificador que tenga en cuenta la localidad de datos y, además, las técnicas se pueden combinar con mecanismos para reducir los efectos negativos de tener tareas pequeñas, como entornos de ejecución en hardware o SPMs de más capacidad. Las propuestas de esta tesis consiguen que las jerarquías de memoria híbridas se puedan programar con modelos de programación fork-join y basados en tareas. En consecuencia, las arquitecturas con jerarquías de memoria híbridas se pueden exponer al programador como multiprocesadores de memoria compartida, beneficiándose de las ventajas de las SPMs en energía y tráfico de coherencia y manteniendo la simplicidad de uso de los modelos de programación de memoria compartida.
Cache-coherent shared memory has traditionally been the favorite memory organization for chip multiprocessors thanks to its high programmability. In this organization the cache hierarchy is in charge of moving the data and keeping it coherent between all the caches, enabling the usage of shared memory programming models where the programmer does not need to carry out any data management operation. Unfortunately, performing all the data management operations in hardware causes severe problems, being the primary concerns the power consumption originated in the caches and the amount of coherence traffic in the interconnection network. A good solution is to introduce ScratchPad Memories (SPMs) alongside the cache hierarchy, forming a hybrid memory hierarchy. SPMs are more power-efficient than caches and do not generate coherence traffic, but they degrade programmability. In particular, SPMs require the programmer to partition the data, to program data transfers, and to keep coherence between different copies of the data. A promising solution to exploit the benefits of the SPMs without harming programmability is to allow programmers to use shared memory programming models and to automatically generate code that manages the SPMs. Unfortunately, current compilers and runtime systems encounter serious limitations to automatically generate code for hybrid memory hierarchies from shared memory programming models. This thesis proposes to transparently manage the SPMs of hybrid memory hierarchies in shared memory programming models. In order to achieve this goal this thesis proposes a combination of hardware and compiler techniques to manage the SPMs in fork-join programming models and a set of runtime system techniques to manage the SPMs in task programming models. The proposed techniques allow to program hybrid memory hierarchies with these two well-known and easy-to-use forms of shared memory programming models, capitalizing on the benefits of hybrid memory hierarchies in power consumption and network traffic without harming programmability. The first contribution of this thesis is a hardware/software co-designed coherence protocol to transparently manage the SPMs of hybrid memory hierarchies in fork-join programming models. The solution allows the compiler to always generate code to manage the SPMs with tiling software caches, even in the presence of unknown memory aliasing hazards between memory references to the SPMs and to the cache hierarchy. On the software side, the compiler generates a special form of memory instruction for memory references with possible aliasing hazards. On the hardware side, the special memory instructions are diverted to the correct copy of the data using a set of directories that track what data is mapped to the SPMs. The second contribution of this thesis is a set of runtime system techniques to manage the SPMs of hybrid memory hierarchies in task programming models. The proposed runtime system techniques exploit the characteristics of these programming models to map the data specified in the task dependences to the SPMs. Different policies are proposed to mitigate the communication costs of the data transfers, overlapping them with other execution phases such as the task scheduling phase or the execution of the previous task. The runtime system can also reduce the number of data transfers by using a task scheduler that exploits data locality in the SPMs. In addition, the proposed techniques are combined with mechanisms that reduce the impact of fine-grained tasks, such as hardware runtime systems or large SPM sizes. The accomplishment of this thesis is that hybrid memory hierarchies can be programmed with fork-join and task programming models. Consequently, architectures with hybrid memory hierarchies can be exposed to the programmer as a shared memory multiprocessor, taking advantage of the benefits of the SPMs while maintaining the programming simplicity of shared memory programming models. La memoria compartida con coherencia de caches es la jerarquía de memoria más utilizada en multiprocesadores gracias a su programabilidad. En esta solución la jerarquía de caches se encarga de mover los datos y mantener la coherencia entre las caches, habilitando el uso de modelos de programación de memoria compartida donde el programador no tiene que realizar ninguna operación para gestionar las memorias. Desafortunadamente, realizar estas operaciones en la arquitectura causa problemas severos, siendo especialmente relevantes el consumo de energía de las caches y la cantidad de tráfico de coherencia en la red de interconexión. Una buena solución es añadir Memorias ScratchPad (SPMs) acompañando la jerarquía de caches, formando una jerarquía de memoria híbrida. Las SPMs son más eficientes en energía y tráfico de coherencia, pero dificultan la programabilidad ya que requieren que el programador particione los datos, programe transferencias de datos y mantenga la coherencia entre diferentes copias de datos. Una solución prometedora para beneficiarse de las ventajas de las SPMs sin dificultar la programabilidad es permitir que el programador use modelos de programación de memoria compartida y generar código para gestionar las SPMs automáticamente. El problema es que los compiladores y los entornos de ejecución actuales sufren graves limitaciones al gestionar automáticamente una jerarquía de memoria híbrida en modelos de programación de memoria compartida. Esta tesis propone gestionar automáticamente una jerarquía de memoria híbrida en modelos de programación de memoria compartida. Para conseguir este objetivo esta tesis propone una combinación de técnicas hardware y de compilador para gestionar las SPMs en modelos de programación fork-join, y técnicas en entornos de ejecución para gestionar las SPMs en modelos de programación basados en tareas. Las técnicas propuestas hacen que las jerarquías de memoria híbridas puedan programarse con estos dos modelos de programación de memoria compartida, de tal forma que las ventajas en energía y tráfico de coherencia se puedan explotar sin dificultar la programabilidad. La primera contribución de esta tesis en un protocolo de coherencia hardware/software para gestionar SPMs en modelos de programación fork-join. La propuesta consigue que el compilador siempre pueda generar código para gestionar las SPMs, incluso cuando hay posibles alias de memoria entre referencias a memoria a las SPMs y a la jerarquía de caches. En la solución el compilador genera instrucciones especiales para las referencias a memoria con posibles alias, y el hardware sirve las instrucciones especiales con la copia válida de los datos usando directorios que guardan información sobre qué datos están mapeados en las SPMs. La segunda contribución de esta tesis son una serie de técnicas para gestionar SPMs en modelos de programación basados en tareas. Las técnicas aprovechan las características de estos modelos de programación para mapear las dependencias de las tareas en las SPMs y se complementan con políticas para minimizar los costes de las transferencias de datos, como solaparlas con fases del entorno de ejecución o la ejecución de tareas anteriores. El número de transferencias también se puede reducir utilizando un planificador que tenga en cuenta la localidad de datos y, además, las técnicas se pueden combinar con mecanismos para reducir los efectos negativos de tener tareas pequeñas, como entornos de ejecución en hardware o SPMs de más capacidad. Las propuestas de esta tesis consiguen que las jerarquías de memoria híbridas se puedan programar con modelos de programación fork-join y basados en tareas. En consecuencia, las arquitecturas con jerarquías de memoria híbridas se pueden exponer al programador como multiprocesadores de memoria compartida, beneficiándose de las ventajas de las SPMs en energía y tráfico de coherencia y manteniendo la simplicidad de uso de los modelos de programación de memoria compartida.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.