This article describes how rapidly growing data volumes require systems that have the ability to handle massive heterogeneous unstructured data sets. However, most existing mature transaction processing systems are built upon relational databases with structured data. In this article, the authors design a hybrid development framework, to offer greater scalability and flexibility of data analysis and reporting, while keeping maximum compatibility and links to the legacy platforms on which transaction business logics run. Data, service and user interfaces are implemented as a toolset stack, for developing applications with functionalities of information retrieval, data processing, analyzing and visualizing. A use case of healthcare data integration is presented as an example, where information is collected and aggregated from diverse sources. The workflow and simulation of data processing and visualization are also discussed, to validate the effectiveness of the proposed framework.