Novel high energy density materials N14 (1,6-dihydro-1,2,3,3a,4,5,5a,6,7,8,8a,9,10,10a-tetradecazapyrene) and N18 (1,2,2a,3,4,4a,5,6,6a,7,8,8a,9,10,10a,11,12a-octadecazacoronene) were designed, and their structures, detonation performance and stabilities were calculated employing density functional theory (DFT). Calculations reveals that they have a good balance between high energy and stability. Their energy gaps between LUMO and HOMO are all lower than that of TATB, while their impact sensitivity h50% is estimated close to that of RDX. Concerning energy, detonation performance of the N14 (P = 43.6 GPa, D = 10040 m/s, Q = 2214 cal/g) and the N18 (P = 37.4 GPa, D = 9400 m/s, Q = 2114 cal/g) are comparable to CL-20.