Adequate water intake and optimal hydration status during pregnancy are crucial for maternal and infant health. However, research on water intake by pregnant women in China is very limited. This study mainly aimed to observe the daily total water intake (TWI) of pregnant women and its different sources and to investigate the relationship between their water intake and hydration biomarkers. From October to November 2020, a convenience sample of pregnant women in the second trimester (n = 21) was recruited. Under conditions close to daily life, they undertook a 3-day metabolic trial. Each participant was provided with sufficient bottled water, and the weight of what they drank each time was measured. The intake of other beverages and foods was measured using a combination of weighing and duplicate portion method. Fasting venous blood and 24 h urine samples were collected and analyzed for the hydration biomarkers, including the serum/urine osmolality, urine pH, urine specific gravity, and the concentrations of major electrolytes in urine and serum. The results showed that the mean daily TWI was 3151 mL, of which water from beverages and foods accounted for 60.1% and 39.9%, respectively. The mean total fluid intake (TFI) was 1970 mL, with plain water being the primary contributor (68.7%, r = 0.896). Among the participants, 66.7% (n = 14, Group 1) met the TWI recommendation set by the Chinese Nutrition Society. Further analysis revealed that the TFI, water from beverages and foods, plain water, and milk and milk derivatives (MMDs) were significantly higher in Group 1 than those who did not reach the adequate intake value (Group 2) (p < 0.05). The results of hydration biomarkers showed that the mean 24 h urine volume in Group 1 was significantly higher than that in Group 2 (p < 0.05), while the 24 h urine osmolality, sodium, magnesium, phosphorus, chloride, and creatinine concentrations in Group 1 were significantly lower than those in Group 2 (p < 0.05). However, no significant differences were observed in serum biomarkers. Partial correlation analysis showed that TWI was moderately positively correlated with 24 h urine volume (r = 0.675) and negatively correlated with urine osmolality, sodium, potassium, magnesium, calcium, phosphorus, and chloride concentrations (r = from−0.505 to −0.769), but it was not significantly correlated with serum biomarkers. Therefore, under free-living conditions, increasing the daily intake of plain water and MMDs is beneficial for pregnant women to maintain optimal hydration. The hydration biomarkers in urine are more accurate indicators of water intake and exhibit greater sensitivity compared to serum biomarkers. These findings provide a scientific basis for establishing appropriate water intake and hydration status for pregnant women in China.