The objective of this paper is to develop a computer program for design and thermodynamic analysis of a single effect absorption chiller using LiBr-H2O solution as working fluid. The conditions of hot water entering and leaving the desorber, cooling water entering the absorber and leaving the condenser, chilled water entering and leaving the evaporator, as well as the approach temperatures in condenser, evaporator, desorber, and absorber, the effectiveness of solution heat exchanger, the chiller refrigeration power, and the ambient temperature are used as input data. The program then gives the thermodynamic properties of all state points, the design information of all heat exchangers in the cycle and the overall cycle performance. The results deduced from the computer program are used to study the effect of design parameters on cycle performance. For example, increasing the evaporator and generator temperatures or decreasing the condenser and desorber temperatures can improve the second-law efficiency of the cycle. It is also noticed that the temperatures of hot water, cooling water, and chilled water, respectively, at the inlet of the desorber, condenser, and evaporator have a great effect on cycle coefficient of performance. The results of this program can be used either for sizing a new refrigeration cycle or rating an existing system. It can also be used for optimization purposes. The predictions of the present program are compared with other simulating programs and qualitative agreement is achieved.