2010
DOI: 10.1016/j.jmmm.2010.04.019
|View full text |Cite
|
Sign up to set email alerts
|

A study of the stripe domain phase at the spin reorientation transition of two-dimensional magnetic system

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

3
23
0

Year Published

2012
2012
2022
2022

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(26 citation statements)
references
References 21 publications
3
23
0
Order By: Relevance
“…Here we present a domain spacing model for stripe domain patterns in two-dimensional (2D) ultrathin films, which in contrast to previous approaches also includes the in-plane magnetostatic energy of the domain walls and therefore correctly describes the transition from Bloch to Néel walls in the case of weak DMI. The model considerably extends the work of Kashuba and Pokrovsky [29] as well as similar studies of Won et al [30][31][32]. Experimental data obtained by threshold photoemission magnetic circular dichroism photoemission electron microscopy (TP-MCD-PEEM) on Ni/Fe bi-and trilayer samples grown epitaxially on Cu(001) are successfully recovered by the model.…”
Section: Introductionsupporting
confidence: 79%
See 2 more Smart Citations
“…Here we present a domain spacing model for stripe domain patterns in two-dimensional (2D) ultrathin films, which in contrast to previous approaches also includes the in-plane magnetostatic energy of the domain walls and therefore correctly describes the transition from Bloch to Néel walls in the case of weak DMI. The model considerably extends the work of Kashuba and Pokrovsky [29] as well as similar studies of Won et al [30][31][32]. Experimental data obtained by threshold photoemission magnetic circular dichroism photoemission electron microscopy (TP-MCD-PEEM) on Ni/Fe bi-and trilayer samples grown epitaxially on Cu(001) are successfully recovered by the model.…”
Section: Introductionsupporting
confidence: 79%
“…Here we introduce the 2D DMI constant D = Dt = 2D at a , with D being the DMI constant per volume, t being the sample thickness, and D at being the DMI per atomic bond for a fcc lattice with lattice constant a. The ground state of the stripe domain pattern in a thin ferromagnetic film is found by minimizing its total energy per area comprising exchange, anisotropy, DMI, and dipole energy [29][30][31][32]35].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…To test this model and clarify the role of K u in a DMI system, we performed Monte Carlo simulations 32,33 . A two-dimensional Heisenberg model was constructed to simulate DW configurations in the presence of the interfacial DMI and K u (see Supplementary Note 1).…”
Section: Resultsmentioning
confidence: 99%
“…What is more, these twodimensional magnetic systems may exhibit a spin reorientation transition (SRT) where the magnetization vector M rotates from out-of-plane into the plane of the film. When approaching the SRT from the perpendicularly magnetized region of the magnetic film, the domain width becomes narrower and finally assumes a minimum value-independent of the geometrical shape of the domain pattern-before M finally rotates into the plane 6 . In essence, in thermal equilibrium, the domain width in the phase with perpendicular magnetization adapts to minimize the free energy, which is dominated by exchange, anisotropy and dipolar energy, which are, in turn, functions of temperature and film thickness.…”
mentioning
confidence: 99%