Purpose
This study aims to develop metadata of conceptual elements based on the text structure of research articles on Korean studies, to propose a search algorithm that reflects the combination of semantically relevant data in accordance with the search intention of research paper and to examine the algorithm whether there is a difference in the intention-based search results.
Design/methodology/approach
This study constructed a metadata database of 5,007 research articles on Korean studies arranged by conceptual elements of text structure and developed F1(w)-score weighted to conceptual elements based on the F1-score and the number of data points from each element. This study evaluated the algorithm by comparing search results of the F1(w)-score algorithm with those of the Term Frequency- Inverse Document Frequency (TF-IDF) algorithm and simple keyword search.
Findings
The authors find that the higher the F1(w)-score, the closer the semantic relevance of search intention. Furthermore, F1(w)-score generated search results were more closely related to the search intention than those of TF-IDF and simple keyword search.
Research limitations/implications
Even though the F1(w)-score was developed in this study to evaluate the search results of metadata database structured by conceptual elements of text structure of Korean studies, the algorithm can be used as a tool for searching the database which is a tuning process of weighting required.
Practical implications
A metadata database based on text structure and a search method based on weights of metadata elements – F1(w)-score – can be useful for interdisciplinary studies, especially for semantic search in regional studies.
Originality/value
This paper presents a methodology for supporting IR using F1(w)-score—a novel model for weighting metadata elements based on text structure. The F1(w)-score-based search results show the combination of semantically relevant data, which are otherwise difficult to search for using similarity of search words.