Zirconia is a high-strength ceramic material that expands the design and application possibilities for all-ceramic restorations and dental implants. To enhance the bonding of zirconia restorations to tooth substrates and the osseointegration of implants with the surrounding bone, the surface should be modified by surface treatment. Unfortunately, the effective treatment of sintered zirconia is difficult. Surface treatment for presintered zirconia may be less difficult; thus, the effectiveness of surface treatments of presintered zirconia was investigated herein. The zirconia specimens were randomly divided into eight groups: (1) control (untreated) and seven treated groups subjected to surface treatment (s.ttt.) in the presintered stage, followed by sintering: (2) s.ttt. 1: hydrofluoric acid (HF) gel left during sintering; (3) s.ttt. 2: HF gel washed before sintering; (4) s.ttt. 3: coated with nanosilica; (5) s.ttt. 4: coated with microsilica; (6) s.ttt. 5: coat followed by airborne-particle abrasion; (7) s.ttt. 6: coat followed by partial etching; and (8) s.ttt. 7: coat followed by total etching. The surface microstructure was examined using scanning electron microscopy (SEM) and the crystalline phase was identified using X-ray diffraction (XRD). Biaxial flexural strength was also tested. The results of SEM for s.ttt. 1 and 2 displayed irregular surfaces. S.ttt. 3 showed deeper penetration of the nanosilica into zirconia (27 µm) compared to the microsilica used in s.ttt. 4. S.ttt. 5 and 6 showed irregular coats. S.ttt. 7 showed intergranular pores. The XRD of s.ttt. 1, 2, and 3 revealed tetragonal zirconia as the control group. S.ttt. 4 and 5 showed cristobalite silica and tetragonal zirconia. S.ttt. 6 and 7 contained amorphous silica and tetragonal zirconia, while s.ttt. 7 also showed monoclinic zirconia. The highest flexural strength was for s.ttt. 4 (982.4 MPa), while the lowest was for s.ttt. 7 (386.6 MPa). There was no significant difference in the flexural strength between the control, s.ttt. 1, and 2 (846.3 MPa, 830.0 MPa, and 835 MPa, respectively). Compared to the control group, s.ttt. 3 had a lower flexural strength (634.1 MPa), while s.ttt. 5 and 6 had higher flexural strengths (863.1 MPa and 872.2 MPa, respectively). It can be concluded that the surface modification of presintered zirconia is a promising method as long as no phase transformation or deep subsurface penetration occurs.