2017
DOI: 10.4236/jcc.2017.52004
|View full text |Cite
|
Sign up to set email alerts
|

A Study on Differential Private Online Learning

Abstract: Online learning algorithms are very attractive, in which iterations are applied efficiently instead of solving some optimization problems. In this paper, online learning with protecting privacy is considered. A perturbation term is added into the classical online algorithms to obtain the differential privacy property. Firstly the distribution for the perturbation term is deduced, and then an error analysis for the new algorithms is performed, which shows the convergence and learning rate. From the error analys… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?