2016
DOI: 10.1186/s40064-016-3569-3
|View full text |Cite
|
Sign up to set email alerts
|

A study on efficient detection of network-based IP spoofing DDoS and malware-infected Systems

Abstract: Large-scale network environments require effective detection and response methods against DDoS attacks. Depending on the advancement of IT infrastructure such as the server or network equipment, DDoS attack traffic arising from a few malware-infected systems capable of crippling the organization’s internal network has become a significant threat. This study calculates the frequency of network-based packet attributes and analyzes the anomalies of the attributes in order to detect IP-spoofed DDoS attacks. Also, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
3

Year Published

2019
2019
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 11 publications
(4 citation statements)
references
References 21 publications
0
1
0
3
Order By: Relevance
“…Besides, the unique connection ID (uid) is dropped because it is not useful to train the classifier. The source (source_ip) and destination IP (dest_ip) addresses are excluded from the machine learning features because IP can be spoofed by the attackers [30]. Therefore, IP is infeasible to be used as an attack detection and classification feature.…”
Section: A Phase 1: Identification Of Useful Attribute In Dataset To ...mentioning
confidence: 99%
“…Besides, the unique connection ID (uid) is dropped because it is not useful to train the classifier. The source (source_ip) and destination IP (dest_ip) addresses are excluded from the machine learning features because IP can be spoofed by the attackers [30]. Therefore, IP is infeasible to be used as an attack detection and classification feature.…”
Section: A Phase 1: Identification Of Useful Attribute In Dataset To ...mentioning
confidence: 99%
“…Суть метода заключается в анализе влияния атаки на энтропию IP-адресов. DDoS-атака представляет собой большое количество запросов к конкретному сервису от одного узла-источника, то есть в общем трафике можно увидеть большое количество пакетов с одинаковыми IP-адресами -источника атаки и атакуемого сервера [6]. Атака за счет концентрации трафика на портах источника и портах назначения характеризуется уменьшением энтропии IP-адресов источника и IP-адресов назначения.…”
Section: возможность использования энтропии для обнаружения Ddos-атакunclassified
“…Existem diferentes abordagens para a definição das características que podem ser coletadas do tráfego das redes. Por exemplo, Seo and Lee (2016) utilizam 14 atributos para representar o fluxo normal e malicioso em seu trabalho de detecção de ataques DDoS, enquanto Lu et al (2017) utilizam 22 atributos para detecção de seções de C&C. Como o objetivo deste trabalhoé identificar a diferença comportamental dos dispositivos, e necessário utilizar características que sejam representativas. A quantidade de pacotes enviados, o tamanho dos pacotes, a frequência de envio e recebimento dos pacotes são características importantes para diferenciar usuários reais dos bots.…”
Section: Captura E Pré-processamento Do Tráfego De Redeunclassified