A Study on Near-Infrared Non-Invasive Blood Glucose Concentration Regression Prediction Based on PSO-MKL-SVR
Xinjia Yang,
Linhua Zhou
Abstract:To improve the accuracy of predicting non-invasive blood glucose concentration in the near-infrared spectrum, we utilized the Particle Swarm Optimization (PSO) algorithm to optimize hyperparameters for the Multi-Kernel Learning Support Vector Machine (MKL-SVR). With these optimized hyperparameters, we established a non-invasive blood glucose regression model, referred to as the PSO-MKL-SVR model. Subsequently, we conducted a comparative analysis between the PSO-MKL-SVR model and the PSO-SVR model. In a dataset… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.