Abstract:This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) equation, which arises in nonlinear optimal control. In this approach, we first use the successive approximation to reduce the HJB equation, a nonlinear partial differential equation (PDE), to a sequence of linear PDEs called a generalized-Hamilton-Jacobi-Bellman (GHJB) equation. Secondly, the solution of the GHJB equation is decomposed by basis functions whose coefficients are obtained by the collocation method. This step is c… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.