With the increase of automatic welding system employed in the manufacturing industries, the selection of optimal welding parameters must be more specific to ensure that quality is obtained. Furthermore, it is necessary to have a suitable model that establishes the interrelationship between welding parameters and bead geometry to get the desired weld ability as quality since it is a complicated process, which involves interactions of thermal, mechanical, electrical and metallurgical phenomenon. Many researchers have reported theoretical, numerical, empirical and AI models to give the optimal welding conditions for GMA(Gas Metal Arc) welding process. In addition, controlling the welding parameters plays an important role in ensuring the quality of the weld. However, there is a need to comprehensively review the GMA welding process in terms of different independent and dependent welding parameters for the purpose of modeling and optimization of GMA process. In this paper, several experimental design and optimization methodologies are reviewed and discussed with current literature on experimental design, multiple regressions analysis, the neural network, fuzzy logic, and genetic algorithm to improve the quality of weldments. This review underlines the need of development of appropriate nature inspired algorithm for the optimization of such advanced manufacturing process.