Statistical significance is one of important criteria on judgment of regulatory toxicological testing. The decision tree for analysing quantitative data obtained from repeated dose administration studies in rodents has been in use in Japan around 1981. Since then, several authors proposed improved versions of the decision tree incorporating all possible situations of statistical analysis normally encountered in such studies. Recently, a decision tree, which traces a simple route, unlike the previously proposed ones which trace complex routes has been proposed by a few researchers in Japan. While tracing to the most appropriate statistical tool using a decision tree, we propose to consider following points which also play a significant role in selecting the most appropriate statistical tool: (1) statistical tools that fails to detect a significant difference in the low dose group, (2) use of the one-sided test with high power to detect a significant difference compared with two-sided, (3) as far as possible avoid carrying out statistical analysis on the transformed data, since the analytical result of such data is difficult to interpret, (4) it is important to mention what statistical tools of the decision tree are used for the analysis, (5) examine the data for both normality and homogeneity and (6) for testing homogeneity, use Levene's test. Selection of widely accepted statistical tools is usually preferred to less popular and complex statistical analysis. It has been observed that in recent years the preferred statistical tools for analyzing quantitative data obtained from toxicity studied are of simple in nature but with high power to detect a significant difference.