In this study, breast phantoms were fabricated by emulating glandular and adipose tissues separately using a three-dimensional (3D) printer. In addition, direct and quantitative glandular dose evaluations were performed. A quantitative method was developed to evaluate the glandular and adipose tissues separately when performing glandular dose evaluations. The variables used for glandular dose evaluation were breast thickness, glandular tissue ratio, and additional filter materials. The values obtained using a Monte Carlo simulation and those measured using a glass dosimeter were compared and analyzed. The analysis showed that as the glandular tissue ratio increased, the dose decreased by approximately 10%, which is not a significant variation. The comparison revealed that the simulated values of the glandular dose were approximately 15% higher than the measured values. The use of silver and rhodium filters resulted in a mean simulated dose of 1.00 mGy and 0.72 mGy, respectively, while the corresponding mean measured values were 0.89 mGy ± 0.03 mGy and 0.62 mGy ± 0.02 mGy. The mean glandular dose can be reliably evaluated by comparing the simulated and measured values.