Gold(I) phosphane compounds have recently attracted a renewed interest as potential new protagonists in cancer therapy. A class of phosphane gold(I) complexes containing azolate ligands has been successfully tested against several cancer cell lines and, in particular, against basal-like breast (BLB) cancer, a form characterized by strongly severe diagnosis and short life lapse after classic chemotherapy. Even though the anticancer activity of gold(I) phosphane compounds is thoroughly ascertained, no study has been devoted to the possibility of their delivery in nanovectors. Herein, nonlamellar lyotropic liquid crystalline lipid nanosystems, a promising class of smart materials, have been used to encapsulate gold(I) azolate/phosphane complexes. In particular, ((triphenylphosphine)-gold(I)-(4,5-dichloroimidazolyl-1H-1yl)) (C-I) and ((triphenylphosphine)-gold(I)-(4,5-dicyanoimidazolyl-1H-1yl)) (C-II) have been encapsulated in three different lipid matrices: monoolein (GMO), phytantriol (PHYT) and dioleoyl-phosphatidylethanolamine (DOPE). An integrated experimental approach involving X-ray diffraction and UV resonant Raman (UVRR) spectroscopy, based on synchrotron light and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, has been employed to establish the effects of drug encapsulation on the structure and phase behavior of the host mesophases. The results indicate that gold(I) complexes C-I and C-II are successfully encapsulated in the three lipid matrices as evidenced by the drug-induced phase transitions or by the changes in the mesophase lattice parameters observed in X-ray diffraction experiments and by the spectral changes occurring in UV resonant Raman spectra upon loading the lipid matrices with C-I and C-II.