2014ii In addition, I would like to thank my friends, family, and loved ones for their endless encouragement and love during my college career.
ABSTRACTAlnico is a commercially available series of permanent magnet alloys, which form a nanoscale bcc-intermetallic spinodally decomposed structure. The major mechanism of coercivity in these alloys is shape anisotropy produced by the spinodal morphology. A series of heat treatments, with and without external magnetic field, is crucial to developing optimal magnetic properties. Alnico 8H has a coercivity of 1900 Oe, the highest of all commercial alnico grades, and was used to investigate heat treatment effects on microstructure and magnetic properties.Conventional alnico 8H permanent magnets are manufactured by casting or sintered blended elemental powder techniques. Oxides, especially in sintered varieties, can make up as much as 4% of the magnet, reducing total magnetization. Detrimental grain boundary γ phase, and a newly observed σ phase are present in finished commercial magnets, reducing coercivity. Intragranular γ was also found in sintered varieties. Growth of γ occurred as much as 200°C below its reported thermodynamically stable temperature, as shown in recent phase diagrams.Pre-alloyed alnico 8H (without minor Si, S, or Nb additions) was gas atomized into fine single-phase spherical powders to investigate alternative consolidation methods and processing routes. Hot isostatic pressing at 1250°C produces a fully dense compact with small amounts of γ phase and very a low oxide content. Heat-treating in a similar manner to commercial alnico yields a maximum energy product slightly exceeding standard commercial values. Spark plasma sintering (SPS) at lower temperatures generates compacts 80-92% dense, with a large intercellular network of γ and σ phases.