Durability is a critical issue concerning energy-harvesting devices. Despite the energy-harvesting device’s excellent performance, moving components, such as the metal spring, can be damaged during operation. To solve the durability problem of the metal spring in a vibration-energy-harvesting (VEH) device, this study applied a non-contact magnetic spring to a VEH device using the repulsive force of permanent magnets. A laboratory experiment was conducted to determine the potential energy-harvesting power using the magnetic spring VEH device. In addition, the characteristics of the generated power were studied using the magnetic spring VEH device in a high-speed train traveling at 300 km/h. Through the high-speed train experiment, the power generated by both the metal spring VEH device and magnetic spring VEH device was measured, and the performance characteristics required for a power source for wireless sensor nodes in high-speed trains are discussed.