Based on the LOM (Laminated Object Manufacturing) process, an inert gas-assisted laser method for wood cutting was proposed. The carbonization degree of wood surface was improved by the introduction of helium (He) gas, and the influence of process parameters on the carbonization layer of wood surface was solved, it was significance to reduce the post-processing of LOM and improve the quality of forming workpiece. The cherry wood veneer was used as the experimental material, under the condition of the same process parameters, the wood was cut with or without inert gas-assisted, and the influence factors of kerf quality were studied by variance analysis. The results showed that under the same condition, compared with traditional laser processing, the kerf width was obviously reduced in the inert gas-assisted cutting. Because the He gas had oxygen-isolation and flame retardant effect, which prevented heat accumulation and conduction. The micro morphology of the kerf surface showed that the flatness was better in the inert gas-assisted cutting. As the excess heat was blown out by the cooling and purging of the gas, the phenomenon of oxidation and burning was reduced, the range of HAZ (heat affected zone) was reduced, and the carbonization phenomenon was obviously improved. The surface quality of kerf was improved effectively. According to the analysis of variance, in addition to the effect of laser power, cutting speed and inert gas flow on the cutting width, the interaction between inert gas flow and laser power, laser power and cutting speed were also the main factors which affected the cutting width. The feasibility of the combined inert gas and laser processing to improve wood cutting quality has been verified through experimental research, which provided a certain reference for the followup research on improving the wood processing quality.